
Unshuffle Sort and Ideal Merge
Art S. Kagel

ASK Database Management
222 Dunhams Corner Road
East Brunswick, NJ 08816

+1 732-213-5367

art@askdbmgt.com

ABSTRACT
In this paper the author describes a unique data sort
algorithm, Unshuffle Sort, and a new algorithm for
the merging of multiple sorted sinks, Ideal Merge.

Unshuffle is a distribution sort in two phases. The
effort to optimize the second phase of the
algorithm resulting in the development of an
algorithm for the merge of sorted sinks of which
the author has found no previous description and
which can be shown to be the best possible.

Overall Unshuffle can be shown to a highly
efficient sort when applied to real world data sets
which are seldom truly random.

Unique features of Unshuffle include:

 Performs no exchanges

 Can be applied to unusual data set
sources including arrays, linked lists, and
streaming data

 Can begin to supply sorted output to
consumers expecting streaming data
immediately upon the arrival of the final
input element

CCS Concepts
•Theory of computation~Sorting
and searching - 500

Keywords
Sorting, Merging, Distribution Sort

1. INTRODUCTION
In 1984, as part of a software development project,
I was tasked to find an efficient way to sort a large
data set which was to be kept in memory in a
linked list structure. As part of the requirements I
was given, the data was not to be copied into an
array for sorting as insufficient memory was
available. The program would be running on the
then new IBM PC/AT and was already pushing the
limits of its memory capabilities.

Out of that project came the sorting algorithm I
have named Unshuffle Sort (for reasons described
below) and ultimately also the merge algorithm
that I call the Ideal Merge. An early version of
Unshuffle was published in Computing Language
Magazine in 1986. [1] This paper describes the
final version of the sort as I continue to use it
today.

2. INVESTIGATIONS
Existing algorithms which were known to be
applicable to sorting linked lists in place such as
bubble sorts and Shell Sort were rejected as too
slow for a large data set. Something new was
needed. It occurred to me that the data sets we
were processing were partially ordered. If I could
devise a method for extracting that existing order,
in effect if I could unshuffle the cards, so to speak,
I might find a better way. There followed many

hours sitting with a deck of playing cards that
resulted ultimately in the Unshuffle Sort.

Along the way I determined that Unshuffle is not
restricted to sorting linked lists but can be applied
to any data source including linked lists, arrays,
and streams of data.

3. ALGORITHM
Unshuffle is a distribution sort at its most basic
level and is performed in two phases. The first
phase is the distribution of elements onto restricted
ordered deques which results in a set of sorted lists.
The second phase is the merging of these sorted
lists into a single output target which is typically in
the same format as the input data.

For simplicity, and to honor my hours spent sorting
playing cards, I will refer to such an ordered deque
as a “pile”. Piles are kept in a doubly linked list in
the order they were created from oldest or “first” to
newest or “last”. By convention older piles are said
to be linked to the “left” of newer piles and newer
piles to the “right” of older piles in the linked list.

The pile structure used for the distribution phase is
restricted in the sense that in any single pile
elements may only be added to the ends of the
deque and cannot be inserted between existing
elements. A further restriction requires that the
value of the element at the top of any pile be
greater than that of the top element of the pile to its
left and that the value of the element at the bottom
of any pile be less than the value of the bottom
element of the pile to its left. If an element arrives
which cannot be placed at either end of any
existing deque a new deque is created. The
resulting piles are therefore ordered on both their
top and bottom elements at any given moment
during the distribution phase.

Section 3.1 describes the distribution phase of the
sort and section 3.2 describes the merge phase.

3.1 DISTRIBUTION
Terms used in this description:

 Each pile has a least valued end, referred
to as the “top” and a most valued end
referred to as the “bottom”.

 The phrase “current side” refers to the
end (top or bottom) of the pile to be used
for comparison. The side onto which the
previous element was appended is the
current side initially for the next element.

 References to “beyond” indicate a value
which is less than the element at the top
of some pile or greater than the element
at the bottom of the pile according to the
ordering criteria in use.

 References to “contained” indicate an
element that has a value which is less
than the element at the bottom of some
pile or greater than the element at the top
of the pile according to the ordering
criteria in use and the side being
compared.

 The phrase “current pile” refers to
whichever pile is being used for
comparison.

 The phrase “previous pile” refers to the
pile to the right of the current pile.

 The phrase “left pile” refers to the pile
linked immediately left of the current
pile.

 The phrase “first pile” refers to the
leftmost pile, ie the first pile created.

 The phrase “current of current” refers to
the element on current side of the current
pile to which a new element is being
compared.

The distribution phase algorithm is as follows:

1. Take the first input item and create an
initial or first pile with this item as both
top and bottom elements. Note which
side is the current side. Continue.

2. If no more items goto Phase II: Merging,
else continue.

3. Take next input item for comparison.
4. Select the last pile for comparison as the

current pile. Maintain the same side as
the last comparison to be the current side.
Continue.

5. If the value of the new item is equal to
current of current append to the current

side of current pile and goto 2, else
continue.

6. If the new value is beyond the current of
current and the current pile is not the first
pile then select the left pile as current, go
to 5, else continue.

7. If the new value is beyond the current of
current and the current pile is the first
pile, append to the current side of the
current pile and goto 2, else continue.

8. If the new value is contained within the
current pile and this is not the last pile
append to the current side of the previous
pile and goto 2, else continue.

9. If the current pile is the last pile and only
one side has been compared, switch sides
and goto 4, else continue.

10. (At this point both top and bottom have
been searched without a match) create a
new pile containing the new value and
append it to the right of the last pile as
the new last pile and go to 2.

3.2 MERGING
Once all elements have been distributed onto piles,
the resulting set of piles will a) each be a sorted list
and b) the list of piles will be sorted according to
its top-most element. Indeed the piles will also be
sorted according to their bottom-most elements in
the reverse order. This fact can be used to perform
a reverse sort in the merge phase without inverting
the comparison criteria during the distribution. To
create the output we now have to apply a merge of
sorted sinks.

The Ideal Merge begins with a set of sorted sinks
which, like the piles that result from the
distribution, are sorted by their top element.
Beginning from this point, the algorithm is (this
assumes an ascending sort):

 1 Output the first element of the first pile
(this could be the top or bottom, for
simplicity I will refer to the active
element of each pile as the “top”
element) and goto 2.

 2 If the first pile is now empty,

 2.1 discard that pile (the second pile is
now first).

 2.1.1 If no more piles exit

 2.1.2 Else go to 1.

 2.2 Else go to 3.

 3 Compare the next element (now its first
remaining or top element) on the first
pile to the top element on the second
pile.

 3.1 If the first pile contains the lesser
value then go to 1.

 3.2 Else go to 4.

 4 Remove the first pile from the list of
piles. Use a binary search of the top
elements of the remaining piles to find its
proper position in the sorted list of piles
and insert it there. Go to 1.

4. NOTES
4.1 Stability
Unshuffle is not naturally a stable sort. Stable
output can be simulated by appending the input
arrival order to the key and sorting this extended
key.

4.2 Unique sort results
Uniqueness filtering during the sorting process can
be applied both during the distribution phase and
the merge phase. Filtering for uniqueness solely
during the distribution is insufficient, though it is
sufficient to filter only during the merge phase.
Duplicate key filtering during both the distribution
phase and merge phase will improve the
performance of the sort overall as fewer elements
will need to be merged and filtered during the
merge.

4.3 Low Cost
Unlike many other sort algorithms, Unshuffle does
not swap data elements, does not insert elements
between other elements, and only links and unlinks
deque members. Therefore performance is not
dependent on the size of the data elements
themselves but only on the number of elements, the
entropy inherent in the data (higher entropy results
in more piles and so more comparisons), and the
size and complexity of the comparison key.

5. ORDER OF THE PHASES
5.1 Merge Phase – Ideal Merge
The order of the Ideal Merge used during the
merge phase is O(N*log((M+1)/2)) where M is the
number of piles and N is the total number of
elements in all piles.

5.2 Distribution Phase
During the distribution phase each element is
compared to at most M+1 other elements where M
represents the number of piles at the time. The
number of piles is dependent on the entropy or
randomness of the data. The upper bound of M is
one half of the number of unique key values. If all
elements are unique and the data is fully random,
then M approaches N/2. However, in practice, even
given fully random input, the actual number of
piles is typically far smaller than N/2 and the closer
to N/2 that M approaches, the fewer comparisions
are required to settle each new element onto the
correct pile. Indeed the only way for M to equal
N/2 is if the largest and smallest elements arrive
first followed by the second largest and smallest,
etc. resulting in N comparisons on average and 2N
comparisons at worst.

The general order of the distribution phase is
O(kN) where k is a measure of the entropy in the
data and is proportional to the number of piles.
That means that for a given level of entropy the
behavior of Unshuffle is linear. Best case behavior
is when Unshuffle is presented with a data set that
is already ordered or ordered but reversed. In this
case k=1, the distribution produces a single pile
that need not be merged, and the performance of
Unshuffle is comparable to an order validation run
with O(N) with the slight additional overhead of N
pointer assignments.

6. Applications
Real world data is not random. In business
applications we may sort, for example, on an order
n u m b e r. O r d e r n u m b e r s a r e t y p i c a l l y
monotonically increasing when assigned but some
may arrive in the system out of order. In other
cases the sort key may be preallocated to different
offices (examples include license plate numbers
and preprinted numbered paper order sheets) and
assigned to entities as required. Here there will be
runs of sequential values interleaved with other

ordered runs out of order with each other.
Similarly for ordering on transaction date/time,

All of these data sets are typical of real world data
and are sorted more efficiently by Unshuffle than
by algorithms like quicksort and heapsort that are
optimized for random data and may even display
worst case behavior when confronted with certain
low entropy data sets.

7. ACKNOWLEDGMENTS
The author offers acknowledgment of the detailed
and exhaustive work in the field of sorting by
Donald Knuth and its influence on his continuing
interest in the subject.

8. REFERENCES
[1] Art S. Kagel. Unshuffle, not quite a sort.

Computer Language, vol 3, num 11 (Nov.
1986).

